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Abstract. The computation of the Brillouin cross section for scattering of light off longitudinal
acoustic (LA) bulk phonons in a superlattice with diffuse interfaces between the layers is
presented for the case of normal incidence. Unlike in previous work concerning the problem of
diffuse interfaces, both the modulation of the acoustic and elasto-optic parameters, and the
modulation of the refractive index are taken into account. The acoustic phonon spectrum
is computed by means of numerical solution of a self-adjoint Liouville equation, and the
dispersion relation is obtained using a wavevector selection rule. The transmitted (zeroth-order)
electromagnetic wave, and the consequent fluctuating polarization vector field radiating Brillouin
light are computed numerically for generic depth profiles of elastic, elasto-optic, and dielectric
(optic) properties of the medium. The back-scattered light wave in the superlattice is obtained
to first order in perturbation theory. The Brillouin differential cross section is computed by
summing over the density of phonon states satisfying the wavevector selection rule. As an
application, we present some results for the GaAs–AlAs superlattice, providing evidence for the
differences from the case with diffuse and sharp interfaces.

1. Introduction

In a recent paper, Ghislotti and Bottani [1] described a new method for computing the
cross section for Brillouin scattering of light by shear horizontal surface acoustic phonons in
silicon-on-insulator (SOI) structures with sharp interfaces between the layers of the medium.
In a second work, the method was generalized to treat media witheffectivediffuse interfaces
(e.g. to describe real materials with inclusions between the layers [2, 3]). There it was
emphasized that the method could be applied also to different systems, like superlattices or
other ‘phononic crystals’ [4], where the continuous depth profiles of the physical coefficients
may correspond to diffuse interfaces down to the atomic scale.

In the present paper we use our method to study the scattering of light off longitudinal
acoustic phonons propagating perpendicularly to the surface of a superlattice, with arbitrary
interface profiles between the layers.

A great number of papers have been devoted to the study of light scattering from
acoustic and optic phonons in superlattices (for a review, see e.g. [5]); this interest has been
stimulated by present and possible future applications of semiconductor heterosystems in
microelectronics and non-linear optics ([6]).

Brillouin and Raman scattering are natural probes for superlattice phonons, and have
been used extensively. In particular, significant experimental studies on GaAs–GaxAl 1−xAs
superlattices have been described by Saprielet al [7], Jusserandet al [8], and Colvard
et al [9].
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From a theoretical point of view, He, Djafari-Rouhani and Sapriel [10] presented a very
exhaustive computation of the phonon spectrum, including the spatial modulation of both
elastic and elasto-optic properties of the superlattice. Yet, their work (like the calculation
by Babiker et al [11] using a Green function method) was limited to the case of sharp
interfaces between the layers of the superlattice.

However, a remarkable number of papers have treated the case of diffuse interfaces in
superlattices, because the techniques by means of which the structures are obtained, such
as molecular beam epitaxy and metallo-organic chemical-vapour deposition, give rise to a
natural diffusion of interfaces at the atomic scale in the medium.

In the work of Colvardet al [12] (treating both acoustic and optic phonon regions),
the acoustic difference between GaAs and AlAs was neglected: the acoustic waves were
treated as plane waves. Furthermore, the Al concentration was considered as a perturbation
to that of Ga. Finally, they also assumed that the superlattice behaves like a homogeneous
(effective) medium with respect to the propagation of incident and scattered light.

Subsequently, Jusserandet al [13, 14] presented an analysis of scattering from folded
acoustic phonons, considering the case of interface broadening: they computed the folded
acoustic phonon waves by taking into account the acoustic mismatch between the layers,
but only for an infinite medium.

In general, we stress that all existing algorithms for computing the Brillouin cross
section, in the case of superlattices with diffuse interfaces, assume that the scattering
intensity is proportional to the squared modulus of the Fourier transform of the polarization
field (that is, the source of the scattered light), thus neglecting the influence of refractions
and reflections of the scattered waves at the interfaces in the structure.

We present here a different approach. We consider the whole medium as a thick slab
with two free surfaces and depth-dependent physical properties. The system is described
by giving thez-profiles of the physical coefficients. Phonons (in the acoustic range) are
considered as standing waves in a thick (as compared with the period of the superlattice)
slab. Furthermore, we include in our computation, in addition to the acoustic modulation,
the elasto-optic and the optic modulation, so taking fully into account the reflections and
the refractions of the incident and scattered electromagnetic waves at the interfaces between
the layers.

Our theory is not limited to the linear zone of the dispersion curve of the longitudinal
acoustic phonons, and it is applicable also when the scattering wavevector exceeds the first
reduced mini-Brillouin zone. We only neglect the absorption of light (as was done in all
previous work) because the skin depth of the light is large as compared with the period
of the superlattice, but absorption could easily be introduced in our method [1, 3]. Of
course, the wavevector selection rule typical of a periodic medium (see below) is only a
good approximation in our thick-slab approach.

In section 2 we illustrate how the spectrum of bulk longitudinal phonons in the structure
is obtained by means of a numerical solution of the self-adjoint Liouville equation governing
the propagation of acoustic waves.

The computation of the Brillouin cross section (as proportional to the intensity of the
back-scattered light at the surface of the medium) is sketched in section 3.

Finally, section 4 is devoted to the application of this method to the particular case of
a GaAs–AlAs superlattice, providing evidence for the difference between a situation with
sharp interfaces and one with diffuse interfaces.
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2. Longitudinal elastic waves in the superlattice

We consider a superlattice made up of alternating layers of two different cubic crystals with
their [001] direction perpendicular to the free surface (thez = 0 plane).

The semi-infinite medium is simulated by a thick slab [15] (thicknessh), with two
free surfaces (z = 0 andz = h), and ‘periodic’ depth-dependent physical properties. The
superlattice is described by giving thez-profiles of the elastic coefficients, the mass density,
the dielectric function, and the elasto-optic coefficients.

Though an accurate description of the phonons in the superlattice needs an atomic
model, the long-wavelength acoustic phonons can be studied using an elastic continuum
approach.

The wave equation for a longitudinal elastic bulk wavewz propagating along thez-axis
is [16]

ρ(z)
∂2wz

∂t2
= ∂

∂z

[
C11(z)

∂wz

∂z

]
(1)

whereρ(z) andC11(z) are the depth profiles of the mass density and of the relevant elastic
coefficient in the medium, respectively.

We define theω Fourier component of thewz displacement field as

wz(ω, z, t) = ξ(ω)φz(ω, z)e−iωt (2)

whereξ(ω) is the amplitude of the normal coordinate of the phononω. Replacing (2) in
the wave equation (1) gives the self-adjoint Liouville equation [17]

d

dz

[
C11(z)

dφz(ω, z)

dz

]
+ [ρ(z)ω2]φz(ω, z) = 0. (3)

The mode z-profiles φz(ω, z) are the real eigenfunctions of equation (3). They
correspond to the real eigenvaluesω2, the phonon eigenfrequencies.

The normalization conditions can be deduced from the statistical mean of the energy
associated with the phonon of frequencyω [10]:

〈ξ2
ω〉th

∫ h

0
ρ(z)ω2φ2

z (ω, z) dz ∝ h̄ω
(
n(ω|T )+ 1

2

)
(4)

whereh is the slab thickness andn(ω|T ) is the Bose–Einstein distribution function. If we
take the high-temperature limit(kT � h̄ω) of the Bose–Einstein distribution, equation (4)
becomes

〈ξ2
ω〉th

∫ h

0
ρ(z)φ2

z (ω, z) dz ∝ kBT

ω2
(5)

from which we extract∫ h

0
ρ(z)φ2

z (ω, z) dz = 1 (6)

as the normalization condition for equation (3).
For an acoustic wave propagating along thez-direction in an infinite (periodic)

superlattice with sharp interfaces, the dispersion relation [18] takes the well known Kronig–
Penney [19] form. If instead one considers the case of diffuse interfaces between layers,
the Kronig–Penney dispersion relation is no longer correct. Defining

T̂ (z) ≡
{

d

dz

[
C11(z)

d

dz

]
+ [ρ(z)ω2]

}
(7)
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one can rewrite equation (3) as

T̂ (z)φz(ω, z) = 0 (8)

where

T̂ (z) = T̂ (z + nD) (9)

is a periodic operator (n is an integer andD is the period of the superlattice). Equation (8)
has the Bloch-like solution

φz(ω, z) = ukp (ω, z)eikpz (10)

wherekp is the phonon wavevector (defined in the extended-Brillouin-zone scheme) and

ukp (ω, z + nD) = ukp (ω, z). (11)

In practice we used stress-free boundary conditions at both boundary surfaces of the
finite slab: (

dφz(ω, z)

dz

)
z=0

=
(

dφz(ω, z)

dz

)
z=h
= 0 (12)

and not periodic boundary conditions to obtain the spectrum of (7). In this way our eigen-
functions are standing waves and not the Bloch travelling waves (10). Equations (3), (6),
and (12) constitute a well posed Sturm–Liouville eigenvalue problem [20].

The spectrum of longitudinal bulk acoustic phonons in a semi-infinite (we recover this
case when our slab thicknessh goes to infinity) layered medium is continuous. In our
slab approximation, all of the phonon spectrum is discrete, but it becomes quasi-continuous
provided that the slab is thick enough. It is then possible to compute the density of phonon
states, and to simulate in this way the continuous spectrum of a semi-infinite medium.

Equation (8) allows one to obtain the eigenvaluesω for a fixed value ofkp, and gives
the ‘folded acoustic branches’ which, whenkp is not near to the boundaries of the reduced
Brillouin zones, are very close to those obtained by merely folding in the first reduced
Brillouin zone the acoustic branch of a homogeneous medium with acoustic velocityV

given by

V

D
= V1

d1
+ V2

d2
(13)

whereVi anddi (i = 1, 2) are the mass density, the longitudinal acoustic velocity, and the
thickness (with perfect interfaces) of layeri.

This folding method gives a zigzag succession of linear branches with the equations

ω = V
∣∣∣∣kp + 2πm

D

∣∣∣∣ (14)

wherekp is the phonon wavevector along the axisz (kp is limited to the range−π/D to
π/D—that is, to the first reduced Brillouin zone), andm is an integer which takes the
valuesm = 0 for the Brillouin mode and±1,±2, . . . for the folded longitudinal acoustic
modes(FLA)m.

We numerically solved the problem of finding the whole spectrum of eigenvalues in the
acoustic range using the NAG [21] routine D02KDF based on a Prufer transformation, and
we found the corresponding eigenfunctions using the NAG [21] routine D02HBF.
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3. The Brillouin cross section

We consider a monochromatic electromagnetic plane wave, characterized by the frequency
ω0, normally incident from the vacuum onto the top surface of the structure. The absorption
of the wave is here considered negligible, as in [10–13]. Thus the medium is assumed to
have a real dielectric functionε(z, ω0).

Neglecting the fluctuating part of the susceptibility in Maxwell’s equations, we used a
numerical method to computeEω0

x , the transmitted field in the medium.
If thermal fluctuations are now considered, acoustic phonon fields cause a stochastic

variation of the properties of the medium that can be accounted for by means of an
instantaneous anisotropic susceptibility.

The electromagnetic scattered field can be computed by means of first-order perturbation
theory, because of the smallness of the fluctuating elastic strains produced by phonons at
thermal equilibrium. That is, in our hypothesis, we can use the Born approximation in
scattering theory [22].

The first step is to compute the fluctuating part of the polarization vector in the medium.
Using perturbation theory, we obtain

P
ωs
i = ε0 [ε(z)− 1]Eωsi + ε0δχij (ω0± ωα)Eω0

j . (15)

Above, ε(z) − 1 = χ(z) is the unperturbed isotropic susceptibility when the phononic
field is not taken into consideration (as a consequence of the fact thatωα � ω0, we write
ε(z|ω0± ωα) ≈ ε(z|ω0) = ε(z)).

δχij (ω0 ± ωα) is the anisotropic fluctuating part of the susceptibility. It is due to the
excitation of a single LA(ωα) phonon mode. The second term in the r.h.s. of equation
(15) is responsible for the radiation of Brillouin light—that is, for the scattered fieldEωs at
frequenciesωs = ω0± ωα.

By computing the elasto-optic coupling, it is possible to verify that the part of the
fluctuating polarization vector radiating the scattered field has a single component(P ωsx )R,
which is written as a function of the fluctuating thermal elastic strains

wzz = (1/2)[∂wz(ωα)/∂z] (16)

as

(P ωsx )R = ε0k13(z)wzz(ωα)E
ω0
x (17)

in the [001] direction.k13(z) is thez-profile of the relevant elasto-optic coefficient.
In the presence of the incident electromagnetic wave, the photoelastic effect leads to

polarization of the superlattice along thex-axis. Therefore Brillouin scattering of a normally
incident electromagnetic wave off a pure LA phonon produces a scattered electromagnetic
wave.

Thus, if we consider (for the sake of brevity) just the anti-Stokes term(P ωsx )R, radiating
at the circular frequencyωs = ω0 + ωα (corresponding to the annihilation of pre-existing
phonons), it can be written in the following form:

(P ωsx )R = ξ(ωα)9x(z|ω0, ki;ωα) (18)

where

9x(z|ω0, ki;ωα) = 1

2
k13(z)

dφz(ωα, z)

dz
Eω0
x (z) (19)

are spectral weights. They depend both on the phonon mode profiles and the zeroth-order
incident electromagnetic field in the medium.
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At thermal equilibrium, the thermal average ofξ(ωα) is zero, and, therefore, the average
scattered-field amplitude is zero; thus the statistical properties of the Brillouin light depend
on the probability density of the random variableξ(ωα), and on its time autocorrelation
function.

The inhomogeneous wave equation for the radiation of the scattered-field component
Esαx (z, t) = Eαx (z)e−iωs t is obtained by means of Maxwell’s equations as

d2Eαx (z)

dz2
+ [ks(z)]

2Eαx (z) = −
1

2ε0

(
2π

λ0

)2

ξ(ωα)9x(z|ω0, ki;ωα) (20)

where

ks(z) =
√
ε(z)

ωs

c
(21)

andλ0 ' λs because

|ωα| � |ω0|. (22)

The scattered-field componentEαx (z) is the solution, in the vacuum, above the top
surface (z < 0), of the homogeneous wave equation obtained from the above inhomogeneous
equation by putting the index of refractionn(z) = √ε(z) = 1. Its solution has a plane-wave
form:

Eαx (z) = Eαx (0−)e−iksz. (23)

The total scattered field in the vacuum within an infinitesimal solid angle d� around
the direction ofks , in the far-field approximation, is equal to its plane-wave (Fourier)
component (ωs,ks); therefore, we merely computeEαx (0

−) = Eαx (0+) = Eαx (0).
In our model,Eαx (0) is computed by means of a numerical method, using the NAG

Fortran [21] routine D02HBF to obtain the form of the scattered field in the superlattice,
and, therefore, also at the top surfacez = 0.

For a semi-infinite superlattice, we make use of the wavevector selection rule [10]

kp + ki + ks + 2πm

D
= 0 (24)

wherekp is the wavevector of the phonon in the superlattice,ki and ks are, respectively,
the wavevectors of the incident and scattered light, andm is a relative integer that defines
the branches of the folded acoustic phonons.

We see that, for a given scattering wavevectorq = ki + ks , a series of phonon modes
are excited. As the relative integerm changes, the corresponding frequencies of the excited
phonon modes in the folded longitudinal acoustic branches are obtained by foldingkp in
the first reduced Brillouin zone, and using equation (8) or the simpler equation (14) (if the
dispersion curve is in the linear zone) to compute a different eigenvalue,ωα.

As a consequence of relation (22), one obtains from equation (24), in the case of
backward scattering,

kp + 2ki + 2πm

D
= 0. (25)

The differential scattering cross section is proportional to the thermal average of the
power spectrum of the total scattered-field component, i.e. to the time Fourier transform of
its time autocorrelation function.

We write the approximate scattered far field within d� around the direction ofks as

Esx(r, t) = −
ω2
s

ε0c2
eiksr

∑
α

Aαξ(ωα)e
i[ω0+ωα ]t (26)
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whereAα is proportional toEαx (0).
The ξ(ωα) are independent random variables with mean square values fixed by the

thermal equilibrium conditions

〈ξ2
α 〉th = KBT/Sω2

α(q||) (27)

(S is the illuminated area of the sample surface); hence finally we find that the differential
scattering cross section for anti-Stokes Brillouin scattering from LA bulk phonons is
proportional to

d2σ

d� dω
∝
∑
α

|Aα|2 δ{ω − [ω0+ ωα(kp)]}. (28)

In order to obtain the total scattering cross section, we consider only the contribution
of the phonon having wavevectorskp satisfying to the wavevector selection rule (25).
Therefore we have to sum (28) over the eigenfrequenciesωα corresponding to thesekp.

It is possible to obtain the Stokes cross section in a similar way.

4. Application to GaAs–AlAs superlattices, and discussion of the results

As an application of the theoretical description, in this section we present examples for the
back-scattering in GaAs–AlAs superlattices with diffuse interfaces between the layers.

The period of the superlattice isD = d1 + d2, whered1 andd2 are the thicknesses of
the layers:d1 is the thickness of the GaAs layers, andd2 that of the AlAs layers.

We assume that all of the functions describing the physical properties of the medium
have a hyperbolic tangent profile in each periodD of the structure. The refractive index
n(z) between two layers is, e.g.,

n(z) = 1

2
(n1− n2)

[
tanh

(
z − d1

δ1

)
+ 1

]
+ n2+ 1

2
(n1− n2)

[
tanh

(
z − d2

δ2

)
+ 1

]
where:

(1) n1 andn2 are, respectively, the refractive indices of GaAs and AlAs; and
(2) δ1 andδ2 are the interface width parameters; ifδ1 = δ2, then we writeδ for both δ1

andδ2.

The wavelength of the light incident onto the medium is taken asλ0 = 4880 Å. The
period of the superlattice isD = 421 Å, and the dimension of the thick slab is 100 times
the periodD. The refractive indexes of GaAs and AlAs are, respectively,n1 = 4.39 and
n2 = 3.37 (corresponding toλ0 = 4880Å). The velocities of the longitudinal sound waves
in GaAs and AlAs arev1 = 4726 m s−1 and v2 = 5630 m s−1; the mass densities are,
respectively,ρ1 = 5314.9 kg m−3 andρ2 = 3745 kg m−3. Finally, the ratio of the elasto-
optic coefficient of AlAs to that of GaAs isk2

13/k
1
13 = 0.15. All the above numerical values

are taken from references [5] and [10].
The theoretical cross section is convoluted with a Lorentzian of 15 GHz width to account

for the finite experimental spectral resolution.
The behaviour of the eigenfunctions of the phononic field is shown in figures 1(a) and

1(b). When the wavelength of the mode is very large compared to the periodD of the
superlattice (that is, when the mode is of low order), the superlattice is ‘seen’ by the waves
as an effectively homogeneous medium, and many authors (see, e.g., [12]), assume that
the two media (GaAs and AlAs) always have identical elastic parameters. This means that
the elastic waves in the infinite superlattice are approximated by plane waves insensitive
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Figure 1. Mode profiles of longitudinal acoustic waves corresponding to eigenvalues of different
orders. The ratiodAlAs/D of the thickness of the AlAs layer to the periodD of the superlattice
(D = dGaAs+ dAlAs) is equal to 0.73. δ = 5 Å (solid line) or δ = 30 Å (dashed line).
(a) Eigenfunctions of order 5 for the whole thick slab. (b) Eigenfunctions of order 110 for the
initial part of the thick slab.
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Figure 2. The mean square polarization radiating the Brillouin light versusz at the frequency of
the eigenvalue of order 5, for the initial part of the superlattice, whendAlAs/D = 0.73. δ = 5 Å
(solid line) orδ = 30 Å (dashed line).

to the nanostructure of the medium. Although we do not make such an approximation
in our work, the elastic waves appear anyway as plane waves for low-order modes (see
figure 1(a)). However, when the wavelength of the mode is not very large compared to the
periodD (that is, when the mode order is higher), the waves differ substantially from plane
waves. In fact, in figure 1(b), considerable modulation of the waves, depending on the
different elastic parameters of the alternating GaAs–AlAs layers—that is, depending on the
nanostructure of the medium—is clearly seen. We remark that our work is the first study in
which the modulation of the elastic, elasto-optic, and electromagnetic waves is fully taken
into account in a superlattice with diffuse interfaces between the layers.

In figure 2 we illustrate the depth profiles of the mean square polarization radiating
the Brillouin light in the superlattices with sharp and with diffuse interfaces. We see
that the source of the scattered light is mainly confined to the GaAs layers because, for
those layers, the value of the elasto-optic coefficientk13 is much higher than in the AlAs
layers. This also explains why the effect of interface broadening is mainly seen within
GaAs layers, where differences are amplified by the high peak intensity (and so by the high
spatial frequencies) of the fluctuating polarization. The apparent doubling of the peak at
around 4200Å is probably a numerical artifact due to finite-precision effects, thus having
no physical meaning. The main effect of non-sharp interfaces is to decrease the intensity
of the mean square polarization, in agreement with previous results [12].

The effect of the presence of imperfect interfaces on the differential scattering cross
section is presented in figure 3. In this figure, it can be seen that the peaks corresponding
to the folded acoustic phonons appear as doublets: the first corresponds tom = ±1, the
second tom = ±2, etc.
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Figure 3. The theoretical cross section for the Brillouin mode and for the first folded acoustic
modes whendAlAs/D = 0.73. δ = 5 Å (solid line) or δ = 30 Å (dashed line).

The clearest phenomenon as regards the folded longitudinal acoustic (LA) phonon modes
is the decrease of intensity of their peaks as a consequence of interface broadening. A
reasonable explanation is the following: if one neglects (in a first approximation) the effect
of the infinite reflections and refractions of the scattered wave at the interfaces between the
layers, the scattering intensity is proportional to the Fourier transform of the fluctuation of
the polarization vector along the structure. For sharp interfaces, the Fourier components
slowly decrease with increasing order; therefore this gives rise to many intense contributions.
In contrast, for a diffuse profile, only the first orders give rise to a considerable contribution
(as a limit, in the sinusoidal profile only the zero order exists). This effect is seen also for
the polarization vector in figure 2.

Nevertheless it had to be considered that, for a scattering wavevector exceeding the first
reduced Brillouin zone, the effect of the electromagnetic wave reflections and refractions at
the interfaces cannot be neglected [10].

Figure 4 presents the dependence of the scattering cross section on the relative thickness
of the layers, when the smoothness of the interfaces is fixed. In a previous study [12], it
was established that, whend1 = d2 = D/2, the intensities of the folding branches with
evenm are zero. But, if one does not neglect (in contrast to the procedure followed by the
authors of [12]) the effect of the scattered-wave reflections and refractions at the interfaces,
these intensities are zero for even just a small difference between the values ofd1 andd2.
The dispersion relationships of the longitudinal phonons, in the first reduced Brillouin zone,
are, in practice, equal for GaAs and AlAs crystals when the periodD of the superlattice is
very large compared to the lattice parametera, as is assumed in our work [5]. Since the
folded acoustic modes withm 6= 0 are obtained in the approximation of equation (22), and
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Figure 4. The theoretical cross section for the Brillouin mode and for the first folded acoustic
modes whenδ = 5 Å. dAlAs/D = 0.73 (solid line) ordAlAs/D = 0.50 (dashed line).

their frequencies are computed using equations (13) and (14) (within the hypothesis of a
perfect periodic structure), the eigenfrequencies do not exhibit a significant shift when the
relative thicknesses of the GaAs and AlAs layers are changed. In fact, if one analysed a
short-period superlattice (D ' a), a considerable shift of the mode frequencies as a function
of the relative thicknesses would be found.

In the work of Jusserandet al [14], the authors observed the effect of interface
broadening as a function of the growth temperature on several GaAs/AlAs short-period
superlattices grown by molecular beam epitaxy. They found that only for a large increase
of the growth temperature is it possible to measure a significant difference in the linewidths.
Consistently, we have not found any substantial variation of the linewidths when the
interface widthδ changes from 0̊A to 30 Å, for a periodD = 421 Å.

The computed relative variations of the scattering intensities for the folded LA doublets
as functions of the interface widthδ are presented in figures 5(a) and 5(b).

The decrease of the folded doublets can be entirely explained if one considers that,
when the interface width is enhanced, the medium tends to become more and more
homogeneous; therefore the folded modes (characteristic of the periodicity of the structure)
tend to disappear.

We wish to stress that these curves were obtained also from Jusserandet al [13], in
which reference the intensities of the modes were computed as proportional to the square
modulus of the Fourier transform of the polarization field. In this way Jusserandet al found
the same intensity for the two components of the folded LA doublets. In contrast, if one
considers the effect that the modulation of the refractive indexes has on the scattered waves,
it can be seen in figures 5(a) and 5(b) that the difference between the peaks corresponding
to the same absolute value ofm is not negligible. This effect is visible also in figures 3 and
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Figure 5. The computed variations of the scattering intensities for the first folded LA doublets
as functions of the interface widthδ, whendAlAs/D = 0.73. The intensity is assumed equal to 1
whenδ = 0 Å (sharp interfaces). (a)m = +1 (solid line) orm = −1 (dashed line). (b)m = +2
(solid line) orm = −2 (dashed line).

4 (for a fixed value ofδ), and it is a known result that has been established in experimental
work [5, 12, 14].

Finally, in figures 6(a) and 6(b) we illustrate the effect of the variation of the relative
thickness of the layers on the scattering intensity of the folded longitudinal acoustic modes
(FLA)m. Here the intensity of the Brillouin mode is assumed to be equal to one. Let us
note that, as the absolute value of the folding indexm increases, the scattering intensity
tends to decrease, and this is even more evident if the interface width parameterδ also
increases. Furthermore, it is visible that the folded modes withm = ±2 vanish at a value
of dAlAs/D quite different from 1/2.

For GaAs–AlAs superlattices, the fact that the scattering intensity of the evenm = ±2
modes vanishes not for equal layer thicknesses of GaAs and AlAs, but for a slightly different
superlattice composition, is not a new result either in the case of sharp interfaces. Heet al
[10], for example, found that the intensity of them = ±2 modes vanishes for a relative
thickness value of about 0.57. The difference between previous results given in [12] and
[10] is due to the fact that in all investigations prior to [10], researchers did not take into
account, in addition to acoustic and photoelastic modulation, the difference between the
refractive indices of the layers. Our calculation is consistent with the results of Heet al, but
it is not limited to the case of sharp interfaces. Since even in the case of diffuse interfaces
the intensity of them = ±2 modes vanishes for a relative thickness value of about 0.57,
we think that this phenomenon is independent of the diffuse character of the interfaces, and
depends only on the modulation of the optical properties of the superlattice.
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Figure 6. The variations of the scattering intensities for the folded LA doublets as functions of
the relative thicknessesdAlAs/D of the layers. The intensity of the Brillouin mode is normalized
to one. (a) Solid line:m = +1, δ = 5 Å; dashed line:m = +1, δ = 30 Å; dotted line:m = +2,
δ = 5 Å; chain line: m = +2, δ = 30 Å. (b) Solid line: m = −1, δ = 5 Å; dashed line:
m = −1, δ = 30 Å; dotted line:m = −2, δ = 5 Å; chain line:m = −2, δ = 30 Å.
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5. Conclusions

We have presented the computation of the cross section for Brillouin scattering of light
by longitudinal acoustic waves propagating in a semi-infinite superlattice with arbitrarily
diffuse interfaces between the layers.

The folded acoustic field, the transmitted zeroth-order electromagnetic field, and the
scattered field are obtained by means of a numerical method using the depth profiles of the
physical properties of the medium, thus taking into account the modulation of the acoustic,
optic, and elasto-optic parameters. By just considering additionally the optic modulation—
that is, the difference between the refractive indices of the layers—it is possible to compute
exactly the spectrum of the scattered light, which is shown for the first time in the case of
diffuse interfaces.

The computations are carried out by assuming that the absorption of the electromagnetic
wave is negligible because the skin depth of the light is very large compared with the period
of the superlattice.

Finally, as an application, the case of a superlattice made up of alternate layers of GaAs
and AlAs is illustrated using a back-scattering geometry, providing evidence for the effect
of the interface broadening.
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